
Page 1

The basic desktop PC has looked pretty constant on the outside for the past 10 to
15 years. But inside, the PC technology has been moving fast and this pace is
accelerating.

Microprocessor technology has fueled the growth and CPU performance has, over
the last ten years, increased 400 fold. Of course, we want to deliver this increased
performance directly to the user’s eyes, hands and more recently ears. We want
CPU performance to translate directly into system performance. Just increasing the
performance of the CPU creates bottlenecks in the system design. These
bottlenecks need to be removed so that we can unleash the latest capability within
the CPU.

Over the past 1-2 years, the PC industry adopted the PCI IO subsystem to relieve
the IO bottleneck.

Increased Pentium processor performance is revealing the next system bottleneck --
the memory subsystem.

©1995, Intel Corporation

The PC Heritage

I/O

CPU

Memory

B
an

dw
id

th

Time1987 1995

AAA
AAA
AAA

AA
AA
AA

Page 2

Imagine the Pentium® processor is executing a program and needs to load a variable that is not in it’s
L1 cache. It needs to access the memory subsystem. Execution of this load instruction will stall while
the Pentium processor is waiting for this data. If the data is not in the L2 cache (or the L2 cache does
not exist) the Pentium processor must wait until the data is loaded from main memory. When measured
in CPU clocks, this is a long time.

As the speed of the CPU increases relative to the main memory, the CPU’s percentage performance loss
when accessing main memory is increased.

One solution is to increase the size and speed of the L2 cache. While effective, this is an expensive way
to solve the problem.

Another solution is to increase the speed of main memory. The DRAM industry has been focused on
increased density and not on speed. Yes, there is some work on specialist DRAMs, but these are very
expensive, too.

Let’s look at the CPU and use it to creatively solve our dilemma.

The next system bottleneck?

Long Memory Latency Slows System Performance

L2 Cache

SRAM

Main Memory

DRAM

CPU L1
cache

Memory SubsystemCPU

Page 3

The P6’s primary system challenge is to increase system performance and do it with today’s commodity
memory technology.

The P6 uses Dynamic Execution technology to remove the performance impacts of the relatively slow
main memory subsystem. We shall see in a few slides that the P6 finds other useful work to do rather
than just wait for the memory subsystem to respond. This is more complicated for the microprocessor,
and we shall see that the P6 is actually implemented using three execution units. It is much easier,
however, for the PC platform to absorb. Rather than encourage a change in the PC platform, the P6 was
designed to provide even higher performance using the same PC hardware components. Any increase in
complexity in the system has been absorbed by the P6 processor.

We have integrated a 256K non-blocking L2 cache into the CPU package in the first P6, and this cache
is connected via its own private bus. This results in only cache-to-memory and IO traffic on the CPU
bus. Even with the most stressful of benchmarks that we have simulated, the P6 uses less than 25% of
its external bus bandwidth. This will give us scope to add more CPUs or more IO without dramatically
affecting the PC hardware paradigm.

The P6 Architecture Difference

• P6 designed to address key system challenges
– Uses Dynamic Execution technology

– Reduces impact of slow memory subsystem
– Integrates a non-blocking L2 cache

• Results in spare CPU bus bandwidth for MP and/or IO

Main Memory

DRAM

L2 Cache

SRAM
EU L1

cache

EU

EU

Page 4

• P6 implemented as three independent units

• Dynamic Execution is the unique combination of:
– Multiple Branch Prediction - get many instructions
– Dataflow Analysis - decide best instructions to execute
– Speculative Execution - execute instructions in preferred order

Dynamic Execution

Dispatch
/Execute

Unit

Retire
Unit

Instruction
Pool

Fetch/
Decode

Unit

The internal architecture of the P6 is very different from that of the Pentium® processor since it tackles
the task of executing programs in a fundamentally different way.

The Pentium processor treats a program as a linear sequence of instructions. These instructions are
presented to the execution unit two at a time (the Pentium processor has a level 2 superscalar engine)
and they are executed. A data read that misses the cache will stall execution and the Pentium processor
will wait.

The P6 opens up a wide instruction window using an instruction pool and it divides the task of
executing the program among three independent units. The "fetch/decode" unit is responsible for
putting instructions into the pool. To do this it fetches from the current instruction pointer and analyzes
the instructions as they are decoded. If a conditional branch is encountered, its destination is predicted
and program fetch continues from there. The P6 predicts the direction of these branches correctly >90%
of the time even when these branches are multiple levels deep.

The dispatch/execute unit is looking into the instruction pool for work to do. When it finds an
instruction that has all of its operands ready, then it dispatches it to an execution unit. The P6 uses
Dataflow Analysis to preferably choose those instructions that minimize the overall execution time of
the program. The results are later returned to the instruction pool. Note that instructions execute
depending upon their readiness to execute and not on original program order. In this way a "slow"
instruction will not block a "fast" instruction. The process is called speculative execution since we do
not commit the results to permanent machine state (i.e. real registers and real memory variables) at this
time -- that is, we may have predicted incorrectly during the fetch/decode stage and need to be able to
"unravel" our work.

The retirement unit is looking into the instruction pool for instructions that have completed. It commits
the results to permanent machine state by retiring these instructions in the original program order.

The fetch/decode unit operates in-order and can deliver up to three instructions into the pool in each
clock. The dispatch/execute unit operates out-of-order and can process up to five instructions per clock
although three is typical. The retirement unit can complete up to three instructions per clock. We
classify the P6 as a Level 3 Superscalar engine.

Page 5

The L1 caches were designed to be non-blocking and since suitable, commercial SRAM was not
available we designed and implemented our own non-blocking L2 cache too. The L2 cache controller is
on the P6 CPU die and the tags and data array are implemented on a companion die. The caches are
dual ported and can support a load and store on each clock. These operations are pipelined so a load and
store can be started on every clock.

The internal CPU engine does not stall on a cache miss so the caches are called non-blocking. The L2
cache has a throughput of 4 clocks so it can support 4 concurrent accesses (one in each stage of its
pipeline). If the CPU core issues a fifth load then this is held in a load buffer waiting for the cache. Note
that, once again, the CPU is not stalled on this fifth load. In fact, the load buffer can hold up to 12
entries queued for the cache/memory subsystem before the CPU core is requested to stall.

Accesses that miss on the L2 cache are passed to the memory subsystem. The P6 external bus is a
transaction bus with separate address request and data response phases. The P6 bus interface unit can
support up to 4 outstanding memory subsystem requests for a single P6 and up to 8 outstanding for any
P6 bus. The external bus protocol supports retry and defer mechanisms, so in a multiprocessor design
with extensive IO, data responses could be returned out-of-order also.

Non Blocking Caches

• First P6 has integrated
256K L2 cache

• P6 has 8K/8K data/
instruction L1 caches

• All caches are non-
blocking

Cache miss does NOT
stall the P6 engine

Bus Interface Unit

Fetch Load Store

L1 ICache L1 DCache

L2 CacheSystem Bus

Dispatch
/Execute

Unit

Retire
Unit

Instruction
Pool

Fetch/
Decode

Unit

Page 6

The P6 core communicates with its L2 cache on a dedicated, private bus. This results in all CPU-to-cache traffic being
contained within the P6 package. The external bus is a cache-to-memory bus and is only used to service L2 cache misses and
IO requests. The P6 external bus is a standardized, SMP system bus (standardized since it is implemented in silicon).
Remember that this external bus is also a transaction bus so there are no wasted cycles between the request and response
phases.

The P6 bus interface unit snoops all memory transactions on the P6 external bus using the MESI protocol to keep its internal
caches coherent in a multi-processing (MP) environment. The P6 supports cache-based semaphores which will dramatically
reduce bus traffic when synchronizing multiple processors.

Even with the most stressful of benchmarks that we have simulated, the P6 external bus is less than 25% utilized. This will
allow 4 P6’s to be simply connected together to form an MP system. No external glue logic is required, the 4 CPUs are all
connected in parallel and they operate in parallel using a standard SMP paradigm.

So the P6 integrates all the system-level components into a “single unit of MP”. By integrating the cache controller, cache
interface, cache SRAM, and APIC, we have a much simpler Multiprocessing design. A simpler, lower cost design will
ensure that more MP machines are introduced to the market at lower prices, driving up the demand for MP applications.

What does this mean for desktops? If the system doesn’t use 4 CPUs, then the ‘spare’ bandwidth can be used for IO
devices. With 2 CPUs, for example, we still have 50% = 250MB/s of bandwidth which is two maxed out PCI buses. That’s
four 30 frame/sec full screen videos.

In summary, the internal microarchitecture of the P6 was optimized to provide exceptional performance while using today’s
memory and IO subsystems. On the way, we preserved enough system bus bandwidth to enable multiple high bandwidth
peripherals that are now becoming popular. The P6 gives more performance and will allow the standard PC to support our
increased needs on the desktop through the mid and late 1990’s.

-MP-enabled systems
-Expanded IO for desktops

SMP Memory Bus

P6
Pentium ®

Processor

Cache
Controller

MBC

Cache
SRAMs

API
C

DRAM

Cache Interface

DRAM

